Compensation of IQ-Imbalance and Phase Noise in MIMO-OFDM Systems

نویسنده

  • S. Bogana
چکیده

The degrading effect of RF impairments on the performance of wireless communication systems is more pronounced in MIMO-OFDM transmission. Two of the most common impairments that significantly limit the performance of MIMO-OFDM transceivers are IQ-imbalance and phase noise. Low-complexity estimation and compensation techniques that can jointly remove the effect of these impairments are highly desirable. In this paper, we propose a simple joint estimation and compensation technique to estimate channel, phase noise and IQ-imbalance parameters in MIMO-OFDM systems under multipath slow fading channels. A subcarrier multiplexed preamble structure to estimate the channel and impairment parameters with minimum overhead is introduced and used in the estimation of IQ-imbalance parameters as well as the initial estimation of effective channel matrix including common phase error (CPE). We then use a novel tracking method based on the second order statistics of the intercarrier interference (ICI) and noise to update the effective channel matrix throughout an OFDM frame. Simulation results for a variety of scenarios show that the proposed low-complexity estimation and compensation technique can efficiently improve the performance of MIMO-OFDM systems in terms of bit-error-rate (BER).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compensation of IQ-Imbalance and Phase Noise in MIMO-OFDM Systems

The degrading effect of RF impairments on the performance of wireless communication systems is more pronounced in MIMO-OFDM transmission. Two of the most common impairments that significantly limit the performance of MIMO-OFDM transceivers are IQ-imbalance and phase noise. Low-complexity estimation and compensation techniques that can jointly remove the effect of these impairments are highly de...

متن کامل

2006 IEEE Radio and Wireless Symposium

This paper studies the influence, estimation and digital compensation of IQ imbalance at both transmitter and receiver side of a multiple-input multiple-output (MIMO) OFDM system. Hereto a preamble is designed, which enables simultaneous estimation of the channel and imbalance parameters. New estimation approaches for TX, RX and joint TX and RX IQ imbalance in MIMO OFDM systems are proposed and...

متن کامل

Power amplifier linearization technique with IQ imbalance and crosstalk compensation for broadband MIMO-OFDM transmitters

The design of predistortion techniques for broadband multiple input multiple output-OFDM (MIMO-OFDM) systems raises several implementation challenges. First, the large bandwidth of the OFDM signal requires the introduction of memory effects in the PD model. In addition, it is usual to consider an imbalanced in-phase and quadrature (IQ) modulator to translate the predistorted baseband signal to ...

متن کامل

Efficient Compensation of Transmitter and Receiver IQ Imbalance in OFDM Systems

Radio frequency impairments such as in-phase/quadrature-phase (IQ) imbalances can result in a severe performance degradation in direct-conversion architecture-based communication systems. In this paper, we consider the case of transmitter and receiver IQ imbalance together with frequency selective channel distortion. The proposed training-based schemes can decouple the compensation of transmitt...

متن کامل

Comparative Analysis of Estimation Techniques for IQ Imbalance for OFDM Based WiMAX System: A Review

Wireless communication is becoming very popular now a days. Worldwide Interoperability for Microwave Access (WiMAX) system in wireless communication plays an important role and has been attracting the researchers in the last decade. WiMAX system has provided anefficient solution for ‘last mile’ access technology to provide high data rate internet access for residential as well as small business...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1209.0061  شماره 

صفحات  -

تاریخ انتشار 2012